

Retrieving chlorophyll concentration from GOES-R advanced baseline imager using deep learning

Guangming Zheng^{1,2}, Christopher W. Brown¹, & Paul M. DiGiacomo¹

¹NOAA/NESDIS/Center for Satellite Applications and Research ²Cooperative Institute for Satellite Earth System Studies (CISESS) /Earth System Science Interdisciplinary Center (ESSIC), University of Maryland

Motivation

Ocean color
 Higher spectral, spatial, temporal resolutions

Geostationary ocean color

GOCI, launched 2010; GOCI-II, launched 2020

GEOCAPE, launch date TBD

South Korea

USA

Geostationary weather satellites

Advanced Himawari Imager (AHI) / Himawari-8

470 nm 510 nm 640 nm

Advanced Baseline Imager (ABI) / GOES-R

470 nm 640 nm

Japan

[*Murakami*, 2016]

USA

Matchup ABI with VIIRS

- Selected Jan 21 Dec 21, 12 days in 2018
- ±2 hours, cloud masked
- Subsampled to have more balanced [Chl-a] distribution

Raw ABI Data vs. VIIRS-derived [Chl-a]

- No atmospheric correction applied on ABI radiance data
- No visible correlation between ABI bands and VIIRS [Chl-a] values

Model Architecture

Output

10 Fully connected layers

ABI zenith,

cosines,

julian day,

solar zenith,

azimuth difference,

earth sun distance

ABI- vs. VIIRS-derived [Chl-a]

Dataset	RMSE	R^2	Slope	MAE	MAPE	Bias	Log-MAE	Log-Bias	N
	${ m mg~m^{-3}}$			${ m mg~m^{-3}}$		${ m mg~m^{-3}}$			
Training	0.249	0.890	0.917	0.0987	22.90	0.0118	1.218	1.038	22624044
Toet	0.247	0.891	0.033	0.101	23.14	0.0131	1.220	1.036	22647

- Good agreement
- Artifact at very low [Chl-a] values (<0.03 mg m⁻³)

ABI Hourly composite

Chilean coastal upwelling

- Hours around local noon agree better with VIIRS
- Magnitude is underestimated but spatial features are well preserved
- Improved data coverage than VIIRS

Comparison with [Chl-a] and SST products Gulf Stream

- Front detection: ABI agrees with VIIRS and OC-CCI
- Gap-free [Chl-a] and SST data captures general but not detailed features

Comparison with [Chl-a] and SST products

Gulf of Mexico

- Small SST but large [Chl-a] gradients
- Extended state of Loop Current

Summary

- We demonstrated the proof-of-concept to retrieve [Chl-a] for the open oceans using GOES-R ABI which was previously considered unfit for ocean color applications owing to the lack of a green band.
- The deep learning model is good at frontal feature detection although the input radiance data were not processed with any atmospheric correction. This suggests that deep learning can recognize subtle patterns barely perceptible to the human eye.
- Deep learning is a powerful tool to take into account a diverse set of input variables that are difficult for human to handle simultaneously. In this case, radiances, sunsensor geometry, and julian day.
- Next steps: Add ancillary data being used for atmospheric correction. Detection of "bad" pixels.

GOES-R Series Research and Risk Reduction program (Award #NA14NES4320003)

NOAA STAR Ocean Color Science Team

NOAA Comprehensive Large Array-data Stewardship System (CLASS)

